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Abstract

The global response of the atmosphere, as simulated by the

Mintz-Arakawa two-level general circulation model, to a persistent

anomalous pool of warm sea surface temperatures in the extratropi-

cal Pacific Ocean is examined in this descriptive study in terms of

the meridional pole-to-pole profile of the zonally-averaged 600 mb

surface for periods up to 90 days. Following an initial hydrostatic

inflation of the isobaric surface in the latitude of the warm pool, ef-

fects spread poleward within the hemisphere, then begin to appear

after about two to three weeks in high latitudes of the opposite hemi-

sphere, but with little or no response in the tropics. The same sea

temperature anomaly field generates a stronger response in winter

than in summer, and a very different reaction when located in the

Southern Hemisphere than when in the Northern Hemisphere. After

a month of thermal forcing the response to an SST anomaly is at

least as large in the opposite hemisphere as in the hemisphere of the

anomaly. A winter hemisphere responds more rapidly to an SST

anomaly in the opposite hemisphere than does a summer hemisphere.

Vacillation between low and high meridional wave number patterns

is observed in the computed reaction to the warm pool.



Intro duct ion

Experiments with the Mintz-Arakawa two-level general circulation

model have recently been carried out for the purpose of estimating the pos-

sible response of the atmosphere to persistent anomalies of sea surface

temperature (SST) over periods of the order of a season (Spar, 1972, a, b).

One of the conclusions derived from these experiments was that SST anom-

alies may induce a significant response in the sea level pressures in the

opposite hemisphere after several weeks, and that these reactions appear

to occur with little or no disturbance of the equatorial region. It appeared

from these computations as if the transequatorial propagation took place

through a form of forced standing wave with an equatorial node. Howe-oer,

no attempt was made in the previous study to examine this interhemispher-

ic transfer of influence in any detail. In the present paper an effort is

made to describe the development of the model atmosphere's response to

these SST anomalies in terms of their effect on the pole-to-pole meridional

profile of the zonal mean 600 mb surface, which represents approximately

the middle level of the model.

A complete documentation of the two-level Mintz-Arakawa model

has been provided by Gates, et al. (1971), and a very brief description of

the model can be found in Spar (1972, a, b). In the Northern Hemisphere SST

anomaly experiments (designated NHTA), the climatological mean annual

sea surface temperatures, which are employed as fixed boundary conditions

in the model computations, were altered by adding from 20C to 6°C to the

SST over a "box" in the North Pacific Ocean bounded by latitudes 220N and

42 0 N and longitudes 140°W and 1800. For the Southern Hemisphere SST

experiments (designated SHTA), the same anomaly field was added to the

corresponding "box" in the South Pacific Ocean. In both cases the maxi-

mum anomaly (+ 60C) isotherm corresponds to a "rectangle" defined by

longitudes 150°W and 170°W and latitudes 300 and 340, so that the center of

the warm pool in the ocean is at latitude 320 and longitude 160°W. A North-

ern Hemisphere anomaly experiment was conducted for both the winter

(NHTA-W) and summer (NHTA-S) seasons, with the same SST fields, while

the Southern Hemisphere anomaly experiment was carried out for northern

summer (southern winter) only. Initial conditions for the three experiments

were taken from history tapes provided by the UCLA group under Dr. Mintz.
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(See Mintz, Katayama, and Arakawa, 1972, for examples of the climate

simulations generated by the model. ) The effect of the SST anomaly is

measured by comparing the "anomaly" run with a "control" run which is

identical in every respect except for the absence of the SST anomaly.

Differences between "anomaly" and "control" runs presumably represent

effects of the SST anomaly.

In each experiment the expected initial effect of the positive SST

anomaly is an augmented heat transfer from sea to air over the local

anomaly region. It is impossible to anticipate a'priori precisely how

this increased heating effect will propagate away from the warm ocean

area or what its ultimate dynamical consequences will be. However, one

can expect that the immediate hydrostatic effect of the augmented heating

will be an inflation of the isobaric surfaces aloft. As the present study is

concerned primarily with the meridional propagation of these effects, it

is desirable to examine zonally averaged quantities. For our purpose we

have chosen the 600 mb level as a characteristic isobaric surface, and

have computed for each day of each 90-day run and for every 4 degrees of

latitude the zonal mean geopotential height of that surface. The initial ef-

fect of the SST anomaly on this quantity is expected to be a rise (relative to

the corresponding control case) of the zonal mean height within the latitude

band containing the warm pool. This initial reaction and the subsequent

evolution of the 600 mb meridional height profile, including the response in

the opposite hemisphere, are illustrated and discussed below.

Experiment NHTA-W

To illustrate the characteristic meridional 600 mb profiles generated

by the model in the northern winter season, we have reproduced in Figure 1

the profiles for the winter control run for days 15, 45, and 90, correspond-

ing to early, middle, and late winter . The large fluctuations in height

1 Because of the fact that initial conditions for the first day of each con-
trol run were selected at random from the history tapes for the appropriate
season, whereas the model sun was reset to its proper solstitial position
for the actual control run, the model appears to go through a transient ad-
justment period during the first few days. Therefore, day 15 rather than
the first day (approximately the solstice) was selected as representative of
early winter.
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Meridional profile of zonal mean 600 mb height for winter
control run, experiment NHTA-W, on days 15, 45, and 90.
(Circles represent the profile on day 90 for the anomaly run).
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found in the Arctic and Antarctic (where the maximum height ranges com-

puted for the whole season were 501 and 377 meters respectively) may be

somewhat unrealistic. Similarly, the total range of heights at the Equator

during the season (computed to be 85 meters) also may be too large. Be-

tween latitudes 50°N and 50 0 S the profiles are highly symmetrical. The

mean zonal geostrophic wind speeds corresponding to the mean height pro-

files at 600 mb between latitudes 300 and 500 in both hemispheres are ap-

proximately 20 m sec I and are slightly higher in the Southern Hemisphere

than in the Northern Hemisphere, despite the fact that Figure 1 represents

northern winter . (The small circles in Figure 1 represent the zonal mean

600 mb heights at 90 days for the anomaly run, and will be discussed later).

The large decrease in height in the Antarctic at the end of the season ap-

pears to indicate that the effect of radiative cooling is already becoming

apparent there by the time of the equinox.

The reaction of the model atmosphere to the SST anomaly during

the first month is illustrated in Figure 2 in the form of a time-latitude

cross-section of height differences between the anomaly and control runs.

Positive values represent an increase in the height of the 600 mb surface

relative to the control case. Difference isopleths, including the zero iso-

pleth, are drawn at an interval of + 20 meters up to 100 meters, and + 40
0-

meters at higher values. Hatching is used to indicate positive effects in

excess of + 20 meters. The latitude of the SST anomaly is indicated

schematically by the bar graphs on either side of the figure, the length

of the bar being proportional to the magnitude of the anomaly at each lati-

tude. For the first three weeks the response is largely confined to the

Northern Hemisphere. The 600 mb surface is intitially elevated within

the latitude band of the SST anomaly and lowered to the north. The crest

of this inflation wave migrates slightly poleward after about two weeks

before vanishing. The maximum height difference within the latitude band

of the SST anomaly, shown in Figure 3 for the entire 90-day period, rises

2 As shown, for example, by Van Loon (1964, 1965), the geostrophic
zonal westerlies at 500 mb in the Southern Hemisphere in southern summer
are stronger than in southern winter, and at least as strong as the zonal
westerlies at 500 mb in the Northern Hemisphere in northern winter. Thus,
the symmetry of the profiles in Figure 1 is probably quite realistic.
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Figure 3. Maximum (positive or negative) anomaly-minus-control
600 mb height differences, AZ, in meters, in the latitude
band 22°N-420N for experiment NHTA-W.
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at an almost constant rate for the first two to three weeks. After that time

the inflation effect in the warm pool latitude band disappears briefly, and

is replaced by a marked elevation of the 600 mb surface in the polar regions.

At the North Pole this effect, which is probably spurious, reaches a maxi-

mum value of 260 meters on day 25. Almost simultaneously a dubious re-
3

sponse appears in the Antarctic , and near the end of the month large ef-

fects are seen in middle latitudes of the Southern Hemisphere. At the end

of 30 days, the inflation in the latitude band of the SST anomaly begins to

reappear, and another period of inflation lasting about three weeks begins,

as shown in Figure 3.

During the first month the largest height difference computed in

the equatorial region was only 14 meters, and during the entire 90-day

period the equatorial response did not exceed 18 meters. The small equa-

torial reaction is illustrated for the whole season in Figure 4, where we

have plotted for each day the largest height difference (positive or nega-

tive) in the latitude band from 60N to 60S. Some disturbance of the equa-

torial region does in fact appear after about three weeks, suggesting a

propagation of influence across the Equator. However, there is no evidence

either in Figure 2 or in the corresponding time-latitude sections for the

following 60 days (not shown) of traveling meridional waves crossing the

Equator. While the small amplitude equatorial oscillation shown in

Figure 4 does apparently represent a response to the SST anomaly, it ap-

pears to have the character of a standing oscillation rather than a progres-

s ive wave.

The global response of the 600 mb surface to the SST anomaly is

further illustrated in Figure 5 showing daily meridional profiles of the

anomaly-control height differences drawn at 10 day intervals beginning on

day 20. Latitude is represented on a sine scale, so that the surface area

of any latitude band is proportional to horizontal distance in the figure.

3
A recently discovered coding error (Gates, et al., 1971) in the com-

putation of the albedo over snow and ice has been found (Gates, 1972) to pro-
duce spurious results in the simulated climatology, especially in the Antarc-
tic. This, together with certain computational problems in the vicinity of
the poles, renders all -results poleward of about latitude 70 ° rather suspect.
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Figure 4. Maximum (positive or negative) anomaly-minus-control
600 mb height differences, LNZ, in meters, in the latitude
band 6ON-60S for experiment NHTA-W.
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No values are plotted or analyzed poleward of latitude 70 ° . (See footnote

3). The bar graphs in the figure indicate the latitude band of the SST

anomaly. Days 20, 30, 40, and 50 are shown in Figure 5(A) and days 60,

70, 80, and 90 appear in Figure 5(B). From Figure 5 it is apparent that,

with the possible exception of the shallow trough on days 20 and 30, no dis-

turbances of significant amplitude crossed the Equator during the season.

It can also be seen in Figure 5 that, following the initial inflation of the

600 mb surface in the latitude band of the SST anomaly, all subsequent

inflations took place north of the center of the warm pool. The standing

character of the oscillation induced in the Northern Hemisphere is indi-

cated in Figure 5, where the amplitude of the oscillation is seen to diminish

with time in middle latitudes, while increasing in higher latitudes.

The Southern Hemisphere response first appears clearly at 30

days in Figure 5(A) in middle and high latitudes, then shifts towards the

Antarctic. However, after 60 days, as shown in Figure 5(B), the influ-

ence of the SST anomaly becomes "locked in" in the Southern Hemisphere,

with a permanent anomaly in the slope of the 600 mb surface. This anoma-

lous corrugation is characterized by relatively high geopotential in the

Antarctic and low geopotential near latitude 40 0 S, as indicated also by the

circles representing the anomaly profile on day 90 in Figure 1. At latitude

50 0 S the anomalous slope on day 90 corresponds to a decrease of about

7 m sec (equivalent to more than 30 percent) in the speed of the geostroph-

ic westerlies. (A similar diminution of the surface Southern Hemisphere

westerlies in the latter part of the season was also noted by Spar (1972, a, b)

based on 30-day mean sea level pressure fields). On the other hand, at

latitude 70 °N on day 90 the anomaly profile shown in Figure 1 represents

a reversal of the geostrophic zonal flow from weak easterlies in the control

case to westerlies in the anomaly run.

The response of the 600 mb surface to the SST anomaly can also

be examined in terms of the day to day changes in the spectral characteris-

tics of the height difference profile. A simple representation of this history

is shown in Figure 6 where the meridional wave number of maximum ampli-

tude (the "dominant wave number") for each day is plotted against time,

with the relative amplitude of each dominant harmonic indicated by the

length of a vertical spike. (In the Fourier analysis of the meridional height

difference profiles the domain was taken as twice the distance from pole

11
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to pole, so that wave number 2 represents one wavelength from pole to

pole, wave number 4 one wavelength from pole to Equator, etc. ). For

the first 10 days the profile is characterized by a low wave number (3)

regime of small but increasing amplitude, corresponding to the initial

hydrostatic inflation of the 600 mb surface. The meridional propagation

of the anomaly effect within the Northern Hemisphere is represented by

an abrupt transition to a high wave number (7 to 13) regime lasting 9 days.

As the SST effect crosses the Equator between days 21 and 31, a second low

wave number regime (2 to 4) is established. Then from days 32 to 39,

the wave numbers fluctuate indecisively before settling into a high wave

number (8) pattern between days 40 and 45. This latter period was char-

acterized by the reappearance of inflation in the Northern Hemisphere

latitude band of the SST anomaly (as shown in Figure 3), while at the same

time the Southern Hemisphere reaction was increasing in magnitude. From

day46 until the end of the season the Southern Hemisphere response be-

comes "locked in", as noted above, and dominates the profile, with the re-

sult that the anomaly-control height difference pattern is characterized

by low wave numbers during all of the latter half of the season. Thus, in

terms of the meridional 600 mb anomaly profile spectrum, the response

to the northern winter SST anomaly is a vacillation between low and high

wave number regimes in the first half of the season, and a fixed low

wave number anomaly pattern in the second half.

Experiment NHTA-S

Representative meridional 600 mb profiles generated by the model

for the northern summer season are illustrated in Figure 7 for days 15,

45, and 90 from the summer control run. (The circles in the figure repre-

sent the anomaly profile for day 45, which is discussed below). A com-

parison of Figure 7 with Figure 1 reveals both the small annual variation

in middle latitudes of the Southern Hemisphere and the large annual varia-

tion in middle and high latitudes of the Northern Hemisphere, as well as

the asymmetry between the hemispheres characteristic of norther sum-

mer. The profile for day 90 indicates that the effect of radiative cooling

at high latitudes in the Northern Hemisphere may already be apparent in

the model in the increased slope of the 600 mb level by the time of the

equinox.

13
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Figure 7. Meridional profiles of zonal mean 600 mb height for summer
control run, experiment NHTA-S, on days 15, 45, and 90.
(Circles represent the profile on day 45 for the anomaly run).
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The time-latitude cross-section in Figure 8 shows the response

(anomaly-minus-control height differences) to the SST anomaly in northern

summer for the first month. Compared with the northern winter experi-

ment (Figure 2), the initial inflation in summer in the latitude band of the

SST anomaly is both slower and smaller. This is also apparent from

Figure 9, where the maximum (positive or negative) anomaly-control

height differences in the latitude band of the SST anomaly have been plotted

for 87 days. During the first month the maximum inflation effect is less

than 20 meters in summer compared with more than 60 meters in winter

(Figure 3). (Only at the end of the season, as shown in Figure 9, does an

inflation effect of 45 meters, comparable to that of the winter experiment,

appear). According to the bulk aerodynamic formula used in the model

(Gates, et al., 1971) to compute heat transfer from sea to air, the anomalous

heating, and hence the inflation effect, should be proportional to the magni-

tude of the SST anomaly, which is the same in both the summer and winter

experiments. However, the heat transfer is also assumed to be proportion-

al to the surface wind speed, which is generally greater in winter than in

summer in the region of the warm pool. This undoubtedly contributes to

the difference between the two seasons. (The relatively large inflation

effect at the end of the summer season noted in Figure 9 is probably also

due in part to stronger surface winds). Other non-linear factors, such as

greater instability and stronger convective heat transfer over the ocean

in winter also contribute to the seasonal difference between the inflation

effects.

In the equatorial region the height differences in experiment

NHTA-S between anomaly and control runs are extremely small during

the entire season, with maximum absolute values of less than 7 meters

(compared with 18 meters in NHTA-W). Despite this evidence that meri-

dional wave propagation does not take place across the Equator, the re-

sponse in the Southern Hemisphere to the SST anomaly in the opposite

hemisphere appears earlier and is larger in southern winter (Figure 8) than

in southern summer (Figure 2). It appears that the winter hemisphere is

more responsive to SST anomalies in the opposite hemisphere than is the

s ummer hemisphe re.
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Figure 9. Maximum (positive or negative) anomaly-minus-control
600 mb height differences, AZ, in meters, in the latitude
band 22ON-42ON for experiment NHTA-S.
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The remaining history of experiment NHTA-S beyond the first

month is illustrated in Figure 10, which shows the meridional height differ-

ence profiles on days 40, 60, and 80. As in Figure 5, latitude is plotted

on a sine scale and no results are shown poleward of latitudes 700N and S.

In these curves there is no evidence of the "locked in" response noted in

the Southern Hemisphere in Figure 5. Instead the reaction in the Southern

Hemisphere to the thermal forcing in the north appears to be in the form of

a standing oscillation. The inflation effect in the Northern Hemisphere at

the end of northern summer noted in Figure 9 also appears in the curve for

day 80 in Figure 10 accompanied by a response of even larger amplitude in

the Southern Hemisphere.

Returning again to Figure 7, it is seen that the anomaly profile at

600 mb, represented for day 45 by the circles, is not very different from

the control profile on the same day. The effects shown in Figures 8, 9,

and 10 do not represent radical alterations of the zonal mean flow, but only

relatively small amplitude perturbations. However, these small effects

on the zonally averaged profiles may be associated with synoptic effects

of considerable magnitude (Spar, 1972, a, b).

Experiment SHTA

The possibility that unobserved events in the Southern Hemisphere

may be transmitting significant signals to the Northern Hemisphere over

periods of the order of a month to a season was the motivation for experi-

ment SHTA. In this experiment the SST anomaly in the South Pacific Ocean

was introduced at the beginning of southern winter (northern summer).

Hence the control profiles for the SHTA experiment are also represented

by the curves in Figure 7.

The initial response in this experiment closely resembles that of

the previous two. Maximum inflation begins in the latitude band of the

SST anomaly and grows rapidly. However, as shown in Figure 11, where

the inflation curves for the SST anomaly belts are plotted for the first

ten days for all three experiments, the resemblance abruptly ends after

four days. Up to day 4 the inflation effect is almost the same for NHTA-W

and SHTA, i. e., for both winter hemisphere SST anomaly experiments.

(The summer hemisphere inflation rate represented by NHTA-S is general-

ly smaller). After day 4, however, the initial inflation effect rapidly

disappears in SHTA, whereas in NHTA-W, as shown in Figure 3, the

18
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inflation continues for about three weeks. The subsequent response to the

SHTA SST anomaly in the latitude band of the Southern Hemisphere warm

pool is shown in Figure 12, which may be compared with the corresponding

Figure 3 for NHTA-W. Both figures exhibit positive maxima at 40-45 days

and 75-80 days, with negative minima at 60-65 days. However, except for

these gross similarities the two curves bear little resemblance to each other.

As shown in the time-latitude cross-section, Figure 13, for the

first month of SHTA, significant height effects do appear in the Southern

Hemisphere within a few days, generally poleward of the latitude band of

the SST anomaly. However, the response in the opposite hemisphere is

minimal in the first month compared with that found in NHTA-W (Figure 2)

or NHTA-S (Figure 8). This same lack of response in the Northern Hemi-

sphere during the first month of SHTA was also noted by Spar (1972, a, b)

in both the sea level pressures and regional 600 mb circulation indices.

One can only speculate about the reasons for both the cut-off of inflation

and the slow transequatorial response in the SHTA experiment. Whatever

the reasons (different initial conditions, effects of continentality, etc. ),

it is apparent that the response to SST anomalies is complex and not read-

ily anticipated.

The history of the meridional response at 600 mb in the SHTA ex-

periment is illustrated in Figure 14 by the height difference profiles for

days 40, 60, and 80. Again the response appears to take the form of a

standing oscillation in both hemispheres, but with a larger amplitude in

the hemisphere opposite the SST anomaly. Relatively large height dif-

ferences appear on day 80 in the equatorial region in this experiment com-

pared with the previous two (Figures 5 and 10). This is further illustrated

in Figure 15, where the largest positive or negative height differences in

the equatorial belt, 6°N-6oS, are plotted for each day. Here it can be seen

that the equatorial response, represented by a lowering of the isobaric sur-

face relative to the control, began only after two months, but continued

to the end of the season.

Summary and Conclusions

The global response of the model atmosphere to a positive SST

anomaly located in extratropical latitudes of the Pacific Ocean has been

studied in terms of the meridional profile of the 600 mb surface from pole

to pole. The initial effect of the SST anomaly is an inflation of the isobaric
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Figure 12. Maximum (positive or negative) anomaly-minus-control
600 mb height differences, AZ, in meters, in the latitude
band 22oS-42oS for experiment SHTA.
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Figure 15. Maximum (positive or negative) anomaly-minus-control
600 mb height differences, aZ, in meters, in the latitude
band 6°N-6oS for experiment SHTA.
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surfaces, relative to a control run, within the latitude band of the warm

pool. This is apparently a direct hydrostatic result of the augmented warm-

ing associated with increased sea-to-air heat transfer. The initial inflation

rate is greater in winter than in summer. In experiments with a North

Pacific warm pool, the inflation continued for about three weeks both in

winter and summer. However, when the same SST anomaly was placed

in the South Pacific Ocean, the initial inflation of the isobaric surface

lasted only a few days.

During the first month of each experiment, the atmospheric re-

action within the hemisphere of the SST anomaly appeared mainly poleward

of the latitude band of the warm pool. This was true in all three experi-

ments, but was more apparent in the winter hemisphere experiments (NHTA-W

and SHTA), as shown in Figures 2 and 13, than in the summer hemisphere

experiment (NHTA-S), illustrated in Figure 8. Although, as shown in

Figure 11, the initial inflation persisted longer and grew ultimately larger

in the Northern Hemisphere summer experiment (NHTA-S) than in the

Southern Hemisphere winter experiment (SHTA), the reactions poleward

of the inflation belt were nevertheless stronger in the winter hemisphere

than in the summer hemisphere.

Significant transequatorial effects first appeared at high latitudes

in the hemisphere opposite the warm pool after about two to three weeks.

After a month the magnitude of the response was at least as large in the

opposite hemisphere as in the hemisphere of the SST anomaly. The winter

hemisphere appeared to respond more rapidly to SST anomalies in the op-

posite hemisphere than did the summer hemisphere. This can be seen by

compannring the rapid transequatonrial response in Figure 8, where the op-

posite hemisphere is a winter hemisphere, with the slower transequatorial

response in Figures 2 and 13, where the opposite hemisphere is the sum-

mer hemisphere. Thus, it appears that the winter hemisphere responds

more sensitively than does the summer hemisphere not only to the effects

of thermal forcing within the hemisphere of the warm oceanic pool, but also

to the transequatorial signals transmitted by SST anomalies in the opposite

hemisphere .

Had this unexpected result been anticipated we would have planned
at least two additional experiments, one with an SST anomaly in the Southern
Hemisphere in northern winter and one with anomalous warm pools in both
hemispheres. But then, there is no bound to the number of experiments
one is tempted to perform with dynamical models.
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The reactions in the tropics were generally quite small, and at

no time was there evidence of meridional wave propagation across the

Equator. Instead the transequatorial response appeared either as a

permanent corrugation of the isobaric surface or as a standing oscilla-

tion in middle and high latitudes of the opposite hemisphere. The vacil-

lation between high and low meridional wave number patterns in the re-

sponse of the zonally averaged 600 mb height profile appears to represent

an alternation between the dominance of direct thermal forcing, i. e. in-

flation, the migration of influences, largely poleward, within the hemi-

sphere of the warm pool, and the transequatorial response.

During the three month period of each experiment, the SST anom-

aly imposed a small but significant perturbation on the 600 mb height pro-

file. The effect on the zonal circulation, represented roughly by the slope

of the difference profile, was not computed as part of the experiment, but

was undoubtedly of even relatively larger magnitude. However, the char-

acter of the perturbation was quite different in each experiment despite

the identical character os the SST anomaly. Clearly the atmospheric re-

sponse, as represented by the model computations, is a complex function

of the initial state of the atmosphere and the hemispheric topography on

which the anomaly is superimposed, and could not have been anticipated

from simplistic qualitative reasoning.

In this descriptive study we have left unanswered the question of

what mechanism is responsible for the propagation of influence across the

Equator. Further diagnostic studies of the experiment, which are in pro-

gress, may provide a better understanding of that problem.
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